4.1

74. ON MULTIPLE PRODUCTION OF PARTICLES
DURING COLLISIONS OF FAST PARTICLES

1. GENBRAL RELATIONS

Collisions of ultra-fast nuclear particles can be accompanied by the appea-
rance of a large number of new particles (many-pronged stars in cosmic radi-
ation). Fermi' propounded the ingenious idea of the possibility of applying
statistical methods for studying this process However, the quantitative

calculation given by him appears unconvincing to us and incorrect at several
points (in particular, in regard to distribution in epergy and angle).

Qualitatively the whole process of collision has the following appearance.
At the moment of collision there appear a large number of particlest concen-
trated in a volume whose linear dimensions are determined by the range of
the nuclear forces and by the energies of the colliding particles (concerning
this, see below); it must be empha,snsed that we can speak of the number of
particles at this moment only in a limited sense, since for a system with such
a high density of strongly interacting partlcles (mesons and nucleons) the
concept of the number of partlcles has in genera,l no precise meaning. The
“mean free path’ of particles in such a system is clearly very small compared
to its dimensions. In the course of time, the system expands, but the afore-
mentioned property of the free path must be valid also for a significant part of
the process of expansmn This part of the expan.smn process must have a hydro-
dynamic character, since the smallness of the mean free path permits us to con-
sider the motion of the matter in the system in a macroscopic hydrodynamical
fashion as the motion of an ideal (non-viscous and non-heat-conducting)
liquid. Since the velocities in the system are comparable to the velocity of
light, we are dealing, not with ordinary, but rather with relativistic hydro-
dynamies.

The total “number of particles” in the system is not at all constant during
the course of the hydrodynamic stage of the expansion. Therefore, the number
of particles in the resulting star is determined, not by the number of particles
which appear at the very moment of collision (as Fermi mistakenly assumes)
but rather by the number of particles in the system at the moment of transition
to the second stage of the expansion—the stage of free separation of the par-
ticles. This essential point was first made by L. Ya. Pomeranchuk®

JL. M. Jlampay, O muomxecTBeEHOM 00pasoBaEMY YACTHI NPH CTOTKBOBEHHAX OHETPHX JACTHI,
Hzsecmus Axadesmun Hayw CCCP, Cepus Gusunecras, 17, 51 (1963)

+ In fact, the appearance of a large number of particles is the condition for the applicability
of the method for treating the problem which is presented below, and of the associated formulas.
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The transition from the first stage to the second occurs when the free path
of particles in the system becomes equal to its linear dimensions. A very essen-
tial point is that at that moment the order of magnitude of the temperature
of the system is T~ ue? (1)

(u is the meson mass; the temperature in always given in energy units),
practically independent of the properties of the system, i.e. of the energy
of the colliding particles. In fact, for values of the temperature substantically
lower than p c?, the density of the equilibrium number of particles falls ex-
ponentially with cooling (as e~#*/T) so that the mean free path rapidly becomes
equal to the dimensions of the expanding system, even when the latter are
relatively large. Formula (1) for 7', (with the z-meson mass substituted for u)
is also valid when, in addition to mesons, other heavier particles are formed,
sinee in order for the free path of all particles to be small, it is already sufficient
that there be a high density of m-mesons in the system.

For the hydrodynamic considerations, it is necessary to have an equation
of state for the matter in the system. As equation of state of highly compressed
matter for temperatures T' > u c* we use:

€

P =- (2)

3 H
where p is the pressure and ¢ is the energy density. Although we have not at
present any rigorous proof that this must be the equatlon of state for arbitrary
matter in the ultrarelativistic case, nevertheless in our opinion this assumption
is highly plausible. ;

Since the number of particles in the system is not fixed, but is rather deter-
mined from the conditions of statistical equﬂlbrmm its chemical potential
(just as for black-body radiation) is

[=g—Ts+p=0_

(s is the entropy per unit volume). Then

dg

Ts=s+p=-?

so if we take into account also that for ﬁxed volume (equal to unity) de = T'ds
we find the relations: '
S~ Taglt o (3)

which, as expected, coincide with the relations for black-body radiation.

The computation of the total number of particles appearing during the
break-up is greatly simplified if we consider the motion of the ideal fluid to
be adiabatic. The only thing that could destroy the adiabaticity would be
shock waves, and it is hard to imagine how they could be formed during the
expansion process. Therefore, the entropy of each of the individual regions
of the system remains unchanged during the expansion.
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Let us break up the system into a set of regions which are macroscopically
small, i.e. practically uniform, but which still contain a sufficiently large num-
ber of particles; let s, be the entropies of these regions. Also let n, be the number
of particles in the x-th region which have been produced at the time of the start
of its iree separation. This time may not be the same for the various regions,
since the system as a whole is highly non-uniform. The quantities s, and =,
individually depend strongly on the temperature (for 7' < uc?, they vary
as e~#IT), but the ratio s,/n, depends only slightly on temperature, so that,
sinee 7', in turn depends little on the properties of the system, we may consider
that

n, = const - s,,

where the constant ratio is a universal constant [if we measure entropy in
dimensionless units, dimensional arguments show that the constant is of
order (uc/t)?]. Summing this equality over all domains, we find that

N = const- S, (4)

where N is the total number of particles in the star, and § is the total entropy
of the system. Since the entropy stays constant during the whole course
of the hydrodynamic stage of the expansion, we may consider § to be the en-
tropy of the system at the initial time—the time of the collision. Formula (4)
enables us to determine the total number of particles appearing during the
collision, without a detailed examination of the ‘motion of the system.

;
2, TorAL NUMBER OF PARTICLES
o /

Let us first consider ‘“head-on” collisions in which the particles pass each
other at distances comparable to the range of interaction, as distinguished from
peripheral collisions where the impact parameter is large compared to the
range of force.

We start with head-on collisions of two protons, and determine the energy
dependence of the total number of particles formed. Let B’ be the energy of
each of the protons in the centre of mass system (c.m.s). The total entropy
of the system S, is proportional to &34 ¥V where¥-is the volume over which the
energy is distributed. In the c.m.s the matber is ab rest at the moment imme-
diately following the collision. Therefore, ¢ = E'[V, and'so the entropy, and
consequently the number of particles, is proportional to Br3ia pue,

The transverse dimension of the system, a, is of order of magnitude of the
range of nuclear foree, i.e. @ ~ #/u ¢. The longitudinal dimension (in the ¢.m.s.)
is shortened by the Lorentz contraction in the ratio ~.M qz/E” (M is the

+ More precisely, after the passage of shock waves, which can arise at the moment of collision ;
the passage of a shock wave is accompanied by a compression of the matter, after which the
expansion stage begins and proceeds adiabatically from then on.
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proton mass). Thus the system is in the form of a highly flattened disk, and its
volume is

V ~a®McEE.
So the number of particles is
N~ BTV~ VB
or, going over to the energy K in the laboratory system in which one of the
protons is at rest, using the formula BMc* = 25", we finally get:
N ~ BVt

This formula coincides with the one obtained by Fermi, but his reasoning
appears to us to be completely unconvincing. From dimensional arguments
(and taking account of the fact that the ratio of masses of proton and @-meson
is fairly close to the unity) we may write:

N=K( B )M (5)

2.M c?

where K is a constant of the order of unmity.

Now let us consider the collision of two identical nuclei of atomic weight 4.
Tt would be completely erroneous to treat such a collision as a series of
collisions of nuclear protons and neutrons. In fact, since the distance between
nuleons in the nuclei is precisely of the order of their range of interaction,
we must look upon the result of the collision as a process-of meson formation
involving as a unit the whole space occupied by the nuclei.

Suppose that the speed of the incident nucleus is equal to that of the proton
in the preceding problem. Then its energy will be 4 times as large. Since the
mass density in a nucleus is approximately the same as that of the proton,
referred to its sphere of interaction, the energy density immediately after
collision is the same as in the previous case. Since the Lorentz contraction
is unchanged, the number of particles formed is simply proportional to the
volume of the nucleus, i.e. to A. Thus we finally obtain:

E 1/a s
¥ xa( i) = Ea () )

24AM c? 2.M c?
For a given energy, the number of particles is proportional to 4% We note
that according to this formula, heavy nuclei are much more effective in par-
ticle formation than protons: two nuclei with energy E give as many particles
as two protons with energy HA43.

When the two nuclei have different weights the problem becomes more
complicated, but elementary considerations related to the fact that in collision
the lighter nucleus pulls out only a part of the heavier one, show that the
number of particles is determined essentially by the mass of the lighter nucleus,
and depends only slightly on the mass of the heavier one.
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If we are dealing with collisions of a meson with a nucleon or nucleus, it
follows that we should expect relatively little difference from the case of a
nucleon.

Determination of the constant K from existing experimental data gives
the value

K ~2,

As for peripheral collisions of the nucleons, at first glance one might conclude
that the average number of particles produced should decrease rapidly with
increasing impact parameter. A basis for this conclusion might be the fact
that the rest energy of the matter concentrated in each individual region of
the meson field of the colliding nucleons decreases rapidly (exponentially)
with increasing distance from their ““centre”. However, the incorrectness of
this derivation is clear from the fact that it leads to a contradiction with the
quantum uncertainty relations; the rest emergy of a portion of the system
would turn out to small compared to the uncertainty

AB ~Hc/d,

where A is the thickness of the region, compressed by the Lorentz contraction
just as for central collisions. In fact, this relation means only that the quantity
which is small is not the actual energy of the system (in those cases where
such a system occurs at all) but rather its mathematical expectation. In other
words, it is not the number of particles appearing that decreases, but only
the probability that such a collision shall occur. -

Thus for collisions of two nucleons it is in general meanmgless to distinguish
between central and peripheral collisions; the effectivé cross-section for collision
with production of a many-pronged star is determined by the “radius” of
the nucleon, &/u c¢t. The picture is somewhat changed in the case of a collision
of two nuclei. It is clear that as we vary the impact parameter from zero to
the sum of the radii of the nuclei, the number of particles formed must decrease
from the maximum value given by formula (6) to the value given by (5) and
corresponding to the collision of two nucleons.

3. DIsTRIBUTION OF PARTICLES PRODUCED IN ENERGY AND
DirEoTION
A study of the angular distribution of the particles formed, and their distri-
bution in energy, requires a detailed consideration of the hydrodynamical
motion of the matter in the system.
The relativistic hydrodynamic equations are contained in the relations

T , (7)
o ’

+ This result was clarified in discussions with E. L. Feinberg.
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where T°% is the energy-momentum tensor of the matter:
T = pg* + (¢ + p) ' u | (8)

(w* is the four-velocity; g1 = g2 = ¢38 = 1, g% = —1; from now on we set
c=1).

As we have already indicated, at the moment of collision the system has
the form of a highly flattened disk. This shape is maintained throughout a
significant part of the hydrodynamical stage of the expansion. During this stage,
the motion of the matter can be considered to be one-dimensional, along the
short axis of the disk (z-axis). Then the equations of motion are:

aTOO aTOl aTol aTll
+ = 03 -+ = 0: (9)
at ox

where ot o=

T = o(w0) + pu), T = (e + p)udut, TH=s@d) +p,  (10)
and «#° and u! are related by the equation:
(«%)? — (w')?=1. (11)

In the c.m.s. the “disk” expands symmetrically to both sides. We choose
our co-ordinate origin in the median plane and shall consider the motion in the
half-space expanding along the positive z-axis (so that & > 0, ul > 0).

Let us call the initial thickness of the “disk’ 4. We:consider some instant
of time £ > A, when the expansion has already progressed significantly.
Neglecting the initial thickness of the disk we can assert: that all the matter
will be in the region 0 < z < ¢, since the velocity cannot exceed that of light.
Most of this space will contain matter which, though moving with a speed
comparable to the light velocity, is not ultra-relativistic; only in a thin layer
t —x <t will there be matter moving with a velocity close to that of light.
As we shall see later, in this last region there is concentrated only a small
part of the entropy, but a large part of the energy of the system. Therefore,
the examination of this small-sized ultra-relativistic region is very essential.
To do this we replace the variable by & = ¢ — 2. Then the first of equations

(9) takes the form: 5700 . 8(Teo — 11 B
ot & B

0, (12)

and, subtracting (12) from the second equation of (9) we find:
0 0
~—— (%% — I1) 4 — (700 — 27701 1 1) — Q, 13
57 )+ 58 ¢ 1 13

In the ultra-relativistic case both components u9, u' of the four-velocity
are large compared to unity and almost equal (we recall that »°® = 1 [/ 1 — v?
u't =w/\/1 — v, where v is the ordinary velocity (in units ¢ = 1). Later we
shall denote by w (in first approximation) either of the quantiies u° and .

A A R A R BB B3R i
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Accordiﬁg to (10):
1

Warw=u>1, 4 —uly—:.
2u

Using these equalities and the equation of state (2), we obtain from (10):

4
T (g + p)u?=—¢

2
U=,
3

£

EX * (14)
&

Suz’

E

T00 — 101 = (¢ u® — put)(u® — u?) =

700 _ 2901 4 P11 = (g + p) (u® — u')? ~

after which equations (12-13) take the form:
0 1 de

_._.__( )=_.__.

ot 4 9&°

ds a [ ¢
at e\ wr)
‘We shall look for solutions of these equations in the domain of values# > &> A.
A solution satisfying all the necessary requirements can be obtained as

follows. Let us make the assumption, which we la.ter show to be valid, that
the function « (£, #) is such that

(15)

ut = 1%, . (16)

where f is a slowly (logarithmically) varying function of £ and ¢. Neglecting
the derivatives of f, we then obtain from (15)

0 g Oe
—o(et) = == floe = — =%
fae) = = o 10 (s)
Next we introduce the new variables
t Ew
T = 1=h— o (17)

and in place of & a new unknown function ¢ according to the relation
e=e% (18)

From the two equations thus obtained,

0 1 4 ] d
f 1+_.(f_ - .22 and f._¢=- 1+-—(-’i-, (19)
ks 4 0dny ot \ on

289



290

576 COLLECTED PAPERS OF L.D. LANDAU
we eliminate f and get:

dp op 3 dp Jdp 0 (20)

Following the general procedure for obtaining the general integral of a partial
differential equation of first order, we first form the complete integral:
4(1 + 4)

—Ap— -T2 B, 21
$=AN T eA "t (21)

containing two constants 4 and B. The general integral (containing one arbit-
rary function) is obtained from the complete integral if we consider B to be a
function of A4, determined by equation (21) and the equation

4 dB

_ ~0 22
1" arsar " T i4 (22)

obtained by setting the derivative dp/04 equal to zero.

Since we are looking for a solution of the equation of motion in the region
of values £ 3 >4, &£ > A, the “initial moment” of the motion corresponds
to values 7 ~ 1, 5 ~ 1. At this “moment”’, the system in the domain under
consideration can be regarded as still uniform, so that the function ¢ is prac-
tically constant and equal to some value @, (the logarithm of the initial energy
density ;). Thus the initial condition for our problem to within the logarithmie
accuracy we are using, is: ,

@ —go~1 for ')7~1‘ Tal. (23)

A solution satlsfymg this condition is obtamed from (21-22), if the arbitrary
function B(4) is chosen so that

B—¢0~1, .B'Nl.,~

Then we can omit B’ altogether in (22), (since 5 > 1, v > 1), and can set
B ~ g, in (21). We then have from (22)

4+ 34 \/?
2 Ny
(we choose the positive root, since in the other case the function f in (16)

would turn out to be negative, which is clearly impossible), after which (21)
gives:

¢=%—§M+T—Jﬂl [

s=%%%}§h%r—%ﬁﬂ¢'

(24)
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When & becomes of the order of £, formula (16) as expected gives w ~ 1.
From formula (24) it follows that in this region (y =~ #):

A 4/3
&= gget3 = g, (7)

Even though the domain & ~ { is outside the region of ultra-relativistic motion,
this result should be correet as to order of magnitude.
The function f is found from ¢ using either of the equations (19):

1 /=
f=3\/;

In accordance with our assumptions, it is a slowly varying function of ¢ and &,
of order umity.

Using the formulas we have obtained, let us see how the energy and entropy
are distributed throughout the thickness of the “disk”. The energy density
is given by the component 7% ~ gu? of the energy-momentum tensor (we
recall that for each element of the matter ¢ is the energy density in the
“proper” frame of reference, in which that element is at rest). So for the
energy dF located in a slab of thickness d£ we have:

dE ~ea?uw?dé=ca?u?&dy,

where a is the radius of the disk. Setting »* ~ t/f in accord with (16) and using
equation (24) we obtain:

adE ~ exp[—— é—(\/;— 2:\‘/;7‘)2}1,7. (25)

Trom this it is clear that the energy distribution has a maximum at 5 = 7/4;
this means that the energy is concentrated mainly'in the region

£~ a8 :

For ¢ > A we get & < t, so that this region is at the limit of applicability of
the one-dimensiondl solution we are considering.

The entropy density is given by the fourth component s? of the four-vector
of entropy current density s° = su’. Since s ~ &3/*(according to (4)), s® ~ u £3/4,
and we find for the entropy associated with a slab of thickness dé:

dS ~ sua?dé~a?sufdn,
or, using formula (24):

d8 ~ exp [——;—(\/? - \/;7—)2](177. , (26)

This distribution has a maximum for 5 = ¢; i.e. the entropy unlike the energy is
concentrated mainly in the region & ~ 1.

CPL 19
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The solution of the equation of motion which we have obtained is applicable
so long as the angle of flight 6 (the angle which the trajectory of a given ele-
ment of the matter makes with the z-axis) is sufficiently small. This is necessary
in order that the distance ¢ 6, which the element travels during the time ¢
in the transverse direction, be small compared to the transverse dimensions
of the system, a:

t0 < a. @7

To evaluate the small angle 6, we use the transverse components of equa-
tion (7), which we have as yet not considered. Thus we get:

J 702 0 22
at | @ Yy ’
or, to order of magnitude,
7oz T22
i "

so that substituting 7% ~ £ 42 § and 7?2 ~ ¢ (the transverse component of the
four-velocity is w¥ ~ % ), we get:

u2fh ~ —.
a

Finally, noting that 2 ~ t/¢, we find:

o~L. (28)
a !

Combining this formula (27) we see that the condition for applicability of
the one-dimensional solution is:

t& < a?. T (29)

We note that the limiting time for the one-dimensional solution is the greater,
the smaller the value of & For the central region, & ~ £, and the limiting time
is t~a.
Starting at the moment
ul (30)
t =___’) ks , 30
1= .
a significant sideways motion appears in the hydrodynamical motion; we shall
call the resulting motion of the matter conical hydrodynamic flight. As we shall
see later, in this stage of the motion the velocity approaches that of light so
quickly, that for each element of matter the quantity & remains practically
constant in time. In addition, one ecan show that all derivatives of hydrodyna-
mic quantities, both with respect to the direction of £ as well as with respect
to the transverse direction, can be neglected in the equations. Thus, in parti-
cular, it follows that, because of the smallness of the sidewise forces, the direc-

3
|
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tion of motion will remain unchanged, i.e. the flight will proceed radially
(conically).

Furthermore, in view of the smallness of the forces during conical flight,
the energy flux traveling within any cone, § = const, must remain constant;
the same is true for the entropy flow. The cross sectional area of such a cone is
proportional to %, so the conditions of constancy of flow of energy and entropy
are:

cu?i? = const, su %~ &4y = const. (31)

From these two relations we find:
1
U ~ t, £~ _f,'; N (32)
which give the law of variation with time of » and e during conical flight.
From (32) we see that in this case the velocity actually approaches that of
light faster than during the preceding stage. The change in the co-ordinate
& of the moving element of matter is given by the formula:

1 1
22 2’

a5 1—9,= (u“—ul)\/l—vzz
from which it is clear that during this stage of the flight, the quantity
approaches a constant value more rapidly.

For ¢~ t,, the solution (32) must-agree to order of magnitude with the
one-dimensional solution considered earlier. For. the “joining” of the two
solutions, it is convenient to introduce the symbols 1 and L, according to the

equations: j

. A4 oy
—E'—::e_", —_—= e"L. (33)
a a - ‘
Then
ﬂ=1n5_=L~z, ' (34)
A :
while the value of the variable v corresponding to the moment #; is
N L (35)
Ty = 'Z = 5 A = “+ 4.

Substituting this value in (26), we find that the entropy distribution is

given by
dS ~evE-#dA.

Since each element of the matter now moves with & = const while its entropy,
by virtue of the adiabaticity of the motion, remains constant, the same for-
mula gives the entropy at the moment of break-up of the matter into individual
freely moving particles. The number of particles produced will be distributed

according to this same law:
dN = CevLr-#dA4, (36)

19%

293



294

580 COLLECTED PAPERS OF L. D, LANDAU

where C is a normalising factor. The angle of flight

PR (37)
a

remains constant along with & for each element of the matter, and consequently
for each particle. Consequently, formulae (36) and (37) determine in parametric
form (parameter 1) the angular distribution of the produced particles (in the
c.m.s.). The constant I which appears in the formula is related simply to the
energy of the colliding particles. In fact, the ratio 4/a is the Lorentz contraction
of the system and is equal, in the notation of section 2 to

MAe \/ZMAGZ
B E

(where M A is the mass of the particles). Therefore

L 1] -—-—————E 38
—EDZMAcz' (38)

The distribution (36) shows that, although the angle of departure in the
c.m.s. is of the order of unity for most of the particles, there also occur much
smaller angles. It is easy to see that the angular distribution does not at all
show spherical symmetry, as Fermi assumed, but that dN/do, referred to

unit solid angle, increases rapidly with decreasing 0.
Formula (36) is easily written in explicit form. In ordet to take into account

angles of the order of unity, we define 1 as

0
A= ——]ntanr—z—. : (39)

‘With this definition, the smallest value 1 = 0, cfjrresponds to the largest
possible value 6 = /2. Formula (36) then becomes '

| 61 do
dN ~ exp[ [I12 — hztan—z—] g (40)

This formula agrees well with the experiniéﬁffal data3. For practical purposes,
formula (36) can be written to sufficient accuracy.in the form:
e

dN ~e 2Zd4. (41)

Thus the angular distribution can be written as a Gaussian distribution, if
we choose as variable the quantity 4 = —In tanf/2. In view of the logarithmic
dependence of 1 on 6, the actual distribution curve of the particles with
respect to the angle 6 itself must have relatively very straight tails on both
sides of the maximum.
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We note that the largest value of 1 which it is still meaningful to consider
must correspond to the condition:
A=1
[ av~1,

A= ;ma.x

or, substituting (86), to logarithmic accuracy,
O'e\/L:“A;’Jmt ~ 1.

According to formulae (5) and (36) the total number of particles is N ~ e’/

therefore
A=1L

dN ~cef ~ el2,
A=0

Thus C ~ e?, and we obtain for Ay,

J3

Amax = TL . (42)
For determining the energy distribution of the particles, we consider the
quantity w, which is proportional to the energy of the particles (the energy
of a particle is the time component of the four-vector put: pud = pu).
During the stage of one-dimensional motion % ~ ﬁ, and at the moment
t = t, it reaches the value u ~ /¢, /€. Therefore, **tacking on” the one-dimen-
sional motion to the solution (32), we find that during the stage of comical
motion: ‘
bt o
% ~ — \ (43)
£ tl a ,
In similar fashion we match the laws (24) and (32) of variation of the
“proper” energy density . For ¢ ~ ¢, the quantity & reaches the value:

4
e = & expl:—— Sl2z- JiE -2 12)]
Determining from this the coefficient of proportmnahty in (32), we find:

4 \* 4
£ = so<71> exp[m—é—(c)L N )] (44)

The start of the free separation of the particles corresponds to the moment
t, when e, decreasing, reaches the value ¢, corresponding to the criterion (1).
From (44) we find:

g0 V4 1
fy ~ t1<———> exp [_ -3-(2L —JI2 - 12)].
80
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Setting ¢ ~ #, in (43) and substituting for ¢, from (35), we find the following
expression for the energy u ' of the particles at the moment of their free
separation :

i 1
uu' ~ pu— = const expl:l + -?T\/L2 — 12].
a

We note that the energy of the outgoing particles is measured by the ratio of
the time (or the distance from the origin) at the moment of decay into particles
to the characteristic time a/c of the system. The constant coefficient in the
expression for y u' is determined from the obvious relation:

[uw dN =B ~VEHA ~ M A,
and we get finally:
L 1
yu’~Mexp{—--é—+l+—§\/L2—12}.‘ (45)

Formulae (36) and (45) give in parametric form the energy distribution (in
the c.m.s.) of the particles produced. From (45) we see that most of the particles
(A ~ 0) have energies p u’ ~ M e™/® ~ M (B'|A MV6) only slightly exceeding M.

We must still go over from the c.m.s. to the original laboratory frame of
reference in which one of the nucleons was at rest before the collision. The angle
X of the outgoing particle in the laboratory system 1s related to the angle 0
in the c.m.s. by the transformation formula: ‘

'u’\/l — Vésiliﬂ
’coseé+ v

tany ~ y =

b

i

where ¢ is the velocity of the particle in the c.m’s., and V is the velocﬁsy of
the c.m. relative to the laboratory system. We may immediately write v’ = 1
in the numerator, and in the denominator, write: ,

-
v

1
v’ ecosO+ V ~ v (1 + cosl) + 5 (V2 -2,

or, since V is closer to unity than »':

1 L
v'eosf+ Val+tcosl+—(1—22)=1+ cosb + .
2 2u'?

The last term on the right can be neglected for all cases except when 6 is too
close to . However, it is easy to see that the angles we have found satisfy
the inequality 6, = — 6 > 1/u'; this is equivalent to the inequality:

L 1

.
|
.
.
|
=

A B A R s
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(according to (39) and (45), which is actually satisfied for all 1 < Apae. Thus we
can set 2’ cos® + V = 1 + cosf, and the formula for transforming angles to
the laboratory system takes the form:

0
‘x-_—_\/l—VztaJnE. (46)

In this connection we note the following curious fact. Independently of
any detailed computations, the distribution of outgoing particles, for a collision
of two identical particles, is symmetric in the c.m.s., i.e. angles 6 occur just
as often as @ — 0. Since tan (m — 6)/2 = 1/tan(6/2), it follows automatically
that, upon averaging over all particles,

Ing=Iny/1— V2= —L, (47)

Tn other words, the geometrical mean of all the angles of separation gives
just the value of the velocity of the c.m. and, consequently, the velocities
of the incident particles (for a collision of two identical particles).

Substituting the value tan (6/2) = e~% and tan (= — 6)/2 = e~*in (46) for par-
ticles moving in opposite directions in the c.m.s., we obtain:

This formula has the special property that when we change from partlcles
going to the rlght in the c.m.s. to particles travellmg to the left, there is merely
a change in sign of the quantity 1. We can therefore write

g=e"L=4 (48)

and consider formulae (36) and (48) as giving the e,ngula,r distribution of all
particles in the laboratory system, where 1 can take both p031t1ve and negative
values.

For the transformation of the energy of particles moving to the right, we
have

uf

U~ —m——— = ol
\/1 - VZ b
and for particles moving to the left we get (noting that 6 > 1/u):

02 '
11}2}.

Substituting (45), this gives:

5L 1
,uu~MeXp{——é——i7u+E\/L2——12}
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This formula too has the property that it describes particles moving to both
the right and the left in the c.m.s., if we write

5L 1
,uu~MeXp{—6——+l+§\/L2-—/12}, (49)

and give 1 both signs.
Formulae (36) and (49) give the energy distribution of the particles in the
laboratory system. The coefficients in these formulas can be made more precise

if we use the obvious relations:
[d¥N =¥, [pud¥=E.

In the integrations we can, to the accuracy we are considering, expand the
exponent in a series in the neighbourhood of the maximum. We then get

N S
AN = —=——-evI-#d],
:; 2n L
or, taking account of (6) and (38),
KA L. vzTw

—_ 5
\/2%L e :dlf (50)

It is understood that the coefficient in this formula is actueiﬂy a slowly varying
(non-exponential) function of the ratio /L. For the energy we get:

55 M Y 7RI —
= . RN B R 51
3 K {6++3\\/, l} (51

2

dN =

Here the same remarks apply to the coefficient as were made in the last case.
From formula (51) it is clear that most of the particles have an energy of

order
B 7712
2
e <2MA c%)
in the laboratory system.

We note that both the angular and energy dlstrlbutmns of the particles
are close to Gaussian if we use the logarithm of these quantities as variables;
consequently, they have quite straight tails on both sides of the maximum.
The results of a computation based on (51) are shown in Fig. 1

In conclusion, I should like to thank E. M. Lifshitz, I. Ya. Pomeranchuk,
and E. L. Feinberg for discussion of the questions touched upon here, and also
L. I. Saruchev for permission to use the drawing of the spectra which he cal-
culated from formula (51).
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Fic. 1.

Differential energy spectra of secondary particles during nuciea.r interactions at high energy
(for varying energies H, of the initial particles). The areas undefrthe)eurvgs are proportional to
the total number of secondary particles (mesons and pucleons).

“
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