

Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb–Pb Collisions at $\sqrt{s_{NN}}$ =2.76 TeV

THE ALICE COLLABORATION

Úvod

- RHIC, Au-Au srážky při $\sqrt{s_{NN}}$ = 200 GeV, produkce hadronů s vysokou p_T 4-5krát menší než odpovídá superpozici pp srážek
- Partony ztrácí energii při průletu QGP
- Kvantifikace pomocí jaderného modifikačního faktoru R_{AA}
- Na LHC se očekává vetší hustota média a tedy větší energetické ztráty partonů s vysokou p_T
- Budeme se tedy věnovat měření primárních nabitých částic při centrálních a periferálních Pb-Pb kolizích
- $^{\circ}$ $\sqrt{s_{NN}}$ =2.76 TeV
- Primární nabité částice: Okamžité částice vzniklé při srážce, včetně rozpadových produktů, kromě slabých rozpadů podivných částic

Měření

Inner Tracking System (ITS)

- Tracking & trigger purpose
- Silicon Pixel Detector
 - "Čtverečkové pole" k určení polohy, odolný vůči záření
- Silicon Drift Detector
 - Elektrony se v polovodiči pohybují konstantní driftovou rychlostí
- Silicon Strip Detector
 - Určují dráhu letů pomocí překrývajících se pásů detektorů

Scintillator hodoscopes (VZERO)

• Měří trajektorii nabitých částic

Time Projection Chamber (TPC)

Válcový detektor s plynem

Nuclear modification factor R_{AA}

$$R_{AA}(p_T) = \frac{\frac{1}{N_{evt}^{AA}} \frac{d^2 N_{ch}^{AA}}{d\eta dp_T}}{\langle N_{coll} \rangle \frac{1}{N_{evt}^{pp}} \frac{d^2 N_{ch}^{pp}}{d\eta dp_T}}$$

Poměr vyprodukovaných nabitých částic v Pb-Pb srážce ku pp srážce, škálovaný středním počtem binárních srážek

Centralita	$\langle N_{part} \rangle$	$\langle N_{coll} \rangle$	$\langle T_{AA} \rangle$ [mb ⁻¹]
0-5%	383 ± 2	1690 ± 131	26.4 ± 0.5
70 – 80 %	15.4 ± 0.4	15.7 ± 0.7	0.25 ± 0.01

$$\eta = -\ln(tg\left(\frac{\Theta}{2}\right))$$

- θ ... polární úhel mezi osou svazku a směrem letu nabité částice
- $\langle N_{coll} \rangle$... počet binárních srážek
- $\langle N_{coll} \rangle = \langle T_{AA} \rangle \sigma_{inel}^{NN}$
 - $\langle T_{AA} \rangle$... funkce jaderného překrytí
 - σ_{inel}^{NN} ... účinný průřez neelastické NN srážky
- N^{AA}_{ch} ... počet nabitých částic produkovaných při srážce jader
- N_{evt}^{pp} ... celkový počet srážek

Analýza

- Celkem 2.3 x 10⁶ minimum-bias Pb-Pb srážek
- $^\circ\,$ Jen data se srážek s vertexem $|z_{vtx}|<10~cm$ a pseudorapiditou $|\eta|<0.8$
- Data vybrána na základě VZERO a korelace TPC s SPD + ZDC

Centralita

- Určena pomocí scintilačních hodoskopů
 - Součet amplitud měřených ve 2 takových detektorech
- Alternativně se využívá multiplicity clusterů a rekonstruovaných stop (SPD)
- Nahoře:
 - Amplitudy VZERO v závislosti na počtu drah v TPC
 - Vybráno 5% a 70-80% nejcentrálnějších srážek
- Dole:
 - Počet eventů v závislosti na počtu drah v TPC

pp reference

- Škálování pp-srážek při jiných energiích
 - Interpolací $\frac{d^2 N_{ch}^{pp}}{d\eta dp_T}$ měřeného pro \sqrt{s} =0.9 TeV a \sqrt{s} =7 TeV
 - Polynomiální závislost
 - Referenční spektrum pomocí dat pouze z ALICE
 - Ověřeno PHOJET a PYTHIA
 - Celková nepřesnost 9-10%
- ° p_T spektrum $\overline{p}p$ kolize při \sqrt{s} =1.96 TeV, $|\eta|$ < 1
 - Spektrum nižší o 5-15 %
- NLO pQCD škálování
 - Počáteční bod 7 TeV
 - Počáteční bod 0.9 TeV
 - Spektrum o 30-50% vyšší

$$R_{AA} = R_{AA}(p_T)$$

- Error bary: statistické chyby
- Čtverečky: kvadrát systematických chyb dat a chyb p_T ze škálování pp-srážek
- $\,\circ\,$ Error bary u R_{AA}=1: chyba <N_{coll}>
- Histogramy jen pro centrální kolize
 - Čárkovaný 0.9 Tev, plný 1.96 Tev
 - Při velkém p_T rozdíl mezi ne/centrálními kolizemi

Periferní kolize

° p_T > 0,2 GeV; R_{AA} nezávisí na p_T → malá ztráta energie

Centrální kolize

- Na začátku silná závislost na p_T:
 - Variace rozložení částic vzhledem k pp (RHIC)
- p_T v intervalu <7,20> GeV roste pro různé pp-reference

 $R_{AA} = R_{AA}(p_T)$

• Chyby:

- STAR: dohromady statistické a systematické
- ALICE: jako předchozí
- PHENIX: čtverečky systematické chyby, error bary - statistické chyby
- Error bary u R_{AA}=1: škálovací chyba R_{AA}
- Výsledky podobné x rekombinační model
- R_{AA} na LHC je menší
 - I přes plošší pokles spektra p_T na LHC dochází k větší ztrátě energie → hustší médium
 - Potřeba dál zkoumat gluonové stínění a saturaci

